Kinase-substrate annotation prioritisation heatmap

kinaseSubstrateHeatmap(
  phosScoringMatrices,
  top = 3,
  printPlot = NULL,
  filePath = "./kinaseSubstrateHeatmap.pdf",
  width = 10,
  height = 10
)

Arguments

phosScoringMatrices

a matrix returned from kinaseSubstrateScore.

top

the number of top ranked phosphosites for each kinase to be included in the heatmap. Default is 1.

printPlot

indicate whether the plot should be saved as a PDF in the specified directory. Default is NULL, otherwise specify TRUE.

filePath

path name to save the plot as a PDF file. Default saves in the working directory.

width

width of PDF.

height

height of PDF.

Value

a pheatmap object.

Examples

# \donttest{
data('phospho_L6_ratio_pe')
data('SPSs')
data('PhosphoSitePlus')

ppe <- phospho.L6.ratio.pe
sites = paste(sapply(GeneSymbol(ppe), function(x)x),";",
    sapply(Residue(ppe), function(x)x),
    sapply(Site(ppe), function(x)x),
    ";", sep = "")
grps = gsub("_.+", "", colnames(ppe))
design = model.matrix(~ grps - 1)
ctl = which(sites %in% SPSs)
ppe = RUVphospho(ppe, M = design, k = 3, ctl = ctl)

phosphoL6 = SummarizedExperiment::assay(ppe, "normalised")

# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6, grps = grps)
aov <- matANOVA(mat=phosphoL6, grps = grps)
idx <- (aov < 0.05) & (rowSums(phosphoL6.mean > 0.5) > 0)
phosphoL6.reg <- phosphoL6[idx, ,drop = FALSE]

L6.phos.std <- standardise(phosphoL6.reg)

rownames(L6.phos.std) <- paste0(GeneSymbol(ppe), ";", Residue(ppe), 
    Site(ppe), ";")[idx]

L6.phos.seq <- Sequence(ppe)[idx]

L6.matrices <- kinaseSubstrateScore(PhosphoSite.mouse, L6.phos.std,
    L6.phos.seq, numMotif = 5, numSub = 1)
#> Number of kinases passed motif size filtering: 114
#> Number of kinases passed profile size filtering: 44
#> Scoring phosphosites against kinase motifs:
#> 1.
#> 2.
#> 3.
#> 4.
#> 5.
#> 6.
#> 7.
#> 8.
#> 9.
#> 10.
#> 11.
#> 12.
#> 13.
#> 14.
#> 15.
#> 16.
#> 17.
#> 18.
#> 19.
#> 20.
#> 21.
#> 22.
#> 23.
#> 24.
#> 25.
#> 26.
#> 27.
#> 28.
#> 29.
#> 30.
#> 31.
#> 32.
#> 33.
#> 34.
#> 35.
#> 36.
#> 37.
#> 38.
#> 39.
#> 40.
#> 41.
#> 42.
#> 43.
#> 44.
#> 45.
#> 46.
#> 47.
#> 48.
#> 49.
#> 50.
#> 51.
#> 52.
#> 53.
#> 54.
#> 55.
#> 56.
#> 57.
#> 58.
#> 59.
#> 60.
#> 61.
#> 62.
#> 63.
#> 64.
#> 65.
#> 66.
#> 67.
#> 68.
#> 69.
#> 70.
#> 71.
#> 72.
#> 73.
#> 74.
#> 75.
#> 76.
#> 77.
#> 78.
#> 79.
#> 80.
#> 81.
#> 82.
#> 83.
#> 84.
#> 85.
#> 86.
#> 87.
#> 88.
#> 89.
#> 90.
#> 91.
#> 92.
#> 93.
#> 94.
#> 95.
#> 96.
#> 97.
#> 98.
#> 99.
#> 100.
#> 101.
#> 102.
#> 103.
#> 104.
#> 105.
#> 106.
#> 107.
#> 108.
#> 109.
#> 110.
#> 111.
#> 112.
#> 113.
#> 114.
#> done.
#> Scoring phosphosites against kinase-substrate profiles:
#> done.
#> Generating combined scores for phosphosites
#> by motifs and phospho profiles:
#> done.

    
kinaseSubstrateHeatmap(L6.matrices)

kinaseSubstrateHeatmap(L6.matrices, printPlot=TRUE)
#> pdf 
#>   3 
# }