Signalomes.Rd
A function to generate signalomes
Signalomes(KSR, predMatrix, exprsMat, KOI, threskinaseNetwork=0.9,
signalomeCutoff=0.5, module_res = NULL, filter = FALSE, verbose = TRUE)
kinase-substrate relationship scoring results
output of kinaseSubstratePred function
a matrix with rows corresponding to phosphosites and columns corresponding to samples
a character vector that contains kinases of interest for which expanded signalomes will be generated
threshold used to select interconnected kinases for the expanded signalomes
threshold used to filter kinase-substrate relationships
parameter to select number of final modules
parameter to filter modules with only few proteins
Default to TRUE
to show messages during the progress.
All messages will be suppressed if set to FALSE
A list of 3 elements.
Signalomes
, proteinModules
and kinaseSubstrates
# \donttest{
data('phospho_L6_ratio_pe')
data('SPSs')
data('PhosphoSitePlus')
grps = gsub('_.+', '', colnames(phospho.L6.ratio.pe))
# Construct a design matrix by condition
design = model.matrix(~ grps - 1)
# phosphoproteomics data normalisation using RUV
L6.sites = paste(sapply(GeneSymbol(phospho.L6.ratio.pe), function(x)paste(x)),
";",
sapply(Residue(phospho.L6.ratio.pe), function(x)paste(x)),
sapply(Site(phospho.L6.ratio.pe), function(x)paste(x)),
";", sep = "")
ctl = which(L6.sites %in% SPSs)
phospho.L6.ratio.RUV = RUVphospho(
SummarizedExperiment::assay(phospho.L6.ratio.pe, "Quantification"),
M = design, k = 3, ctl = ctl)
phosphoL6 = phospho.L6.ratio.RUV
# filter for up-regulated phosphosites
phosphoL6.mean <- meanAbundance(phosphoL6, grps = grps)
aov <- matANOVA(mat=phosphoL6, grps=grps)
phosphoL6.reg <- phosphoL6[(aov < 0.05) &
(rowSums(phosphoL6.mean > 0.5) > 0),, drop = FALSE]
L6.phos.std <- standardise(phosphoL6.reg)
idx <- match(rownames(L6.phos.std), rownames(phospho.L6.ratio.pe))
rownames(L6.phos.std) <- L6.sites[idx]
L6.phos.seq <- Sequence(phospho.L6.ratio.pe)[idx]
L6.matrices <- kinaseSubstrateScore(PhosphoSite.mouse, L6.phos.std,
L6.phos.seq, numMotif = 5, numSub = 1)
#> Number of kinases passed motif size filtering: 114
#> Number of kinases passed profile size filtering: 44
#> Scoring phosphosites against kinase motifs:
#> 1.
#> 2.
#> 3.
#> 4.
#> 5.
#> 6.
#> 7.
#> 8.
#> 9.
#> 10.
#> 11.
#> 12.
#> 13.
#> 14.
#> 15.
#> 16.
#> 17.
#> 18.
#> 19.
#> 20.
#> 21.
#> 22.
#> 23.
#> 24.
#> 25.
#> 26.
#> 27.
#> 28.
#> 29.
#> 30.
#> 31.
#> 32.
#> 33.
#> 34.
#> 35.
#> 36.
#> 37.
#> 38.
#> 39.
#> 40.
#> 41.
#> 42.
#> 43.
#> 44.
#> 45.
#> 46.
#> 47.
#> 48.
#> 49.
#> 50.
#> 51.
#> 52.
#> 53.
#> 54.
#> 55.
#> 56.
#> 57.
#> 58.
#> 59.
#> 60.
#> 61.
#> 62.
#> 63.
#> 64.
#> 65.
#> 66.
#> 67.
#> 68.
#> 69.
#> 70.
#> 71.
#> 72.
#> 73.
#> 74.
#> 75.
#> 76.
#> 77.
#> 78.
#> 79.
#> 80.
#> 81.
#> 82.
#> 83.
#> 84.
#> 85.
#> 86.
#> 87.
#> 88.
#> 89.
#> 90.
#> 91.
#> 92.
#> 93.
#> 94.
#> 95.
#> 96.
#> 97.
#> 98.
#> 99.
#> 100.
#> 101.
#> 102.
#> 103.
#> 104.
#> 105.
#> 106.
#> 107.
#> 108.
#> 109.
#> 110.
#> 111.
#> 112.
#> 113.
#> 114.
#> done.
#> Scoring phosphosites against kinase-substrate profiles:
#> done.
#> Generating combined scores for phosphosites
#> by motifs and phospho profiles:
#> done.
set.seed(1)
L6.predMat <- kinaseSubstratePred(L6.matrices, top=30)
#> Predicting kinases for phosphosites:
#> 1.
#> 2.
#> 3.
#> 4.
#> 5.
#> 6.
#> 7.
#> 8.
#> 9.
#> 10.
#> 11.
#> 12.
#> 13.
#> 14.
#> 15.
#> 16.
#> 17.
#> 18.
#> 19.
#> 20.
#> 21.
#> 22.
#> 23.
#> 24.
#> 25.
#> 26.
#> done
kinaseOI = c('PRKAA1', 'AKT1')
Signalomes_results <- Signalomes(KSR=L6.matrices,
predMatrix=L6.predMat,
exprsMat=L6.phos.std,
KOI=kinaseOI)
#> calculating optimal number of clusters...
#> optimal number of clusters = 3
# }