topGenes.Rd
Extract the top genes from the Cepo output
topGenes(object, n = 5, returnValues = FALSE)
Output from the Cepo function
Number of top genes to extract
Whether to return the numeric value associated with the top selected genes
Returns a list of key genes.
set.seed(1234)
n <- 50 ## genes, rows
p <- 100 ## cells, cols
exprsMat <- matrix(rpois(n * p, lambda = 5), nrow = n)
rownames(exprsMat) <- paste0('gene', 1:n)
colnames(exprsMat) <- paste0('cell', 1:p)
cellTypes <- sample(letters[1:3], size = p, replace = TRUE)
cepo_output <- Cepo(exprsMat = exprsMat, cellTypes = cellTypes)
cepo_output
#> $stats
#> DataFrame with 50 rows and 3 columns
#> a b c
#> <numeric> <numeric> <numeric>
#> gene38 0.551471 -0.441176 -0.11029412
#> gene41 0.404412 -0.411765 0.00735294
#> gene29 0.330882 0.117647 -0.44852941
#> gene21 0.325980 -0.181373 -0.14460784
#> gene32 0.321078 -0.289216 -0.03186275
#> ... ... ... ...
#> gene1 -0.370098 0.05637255 0.3137255
#> gene24 -0.375000 0.12500000 0.2500000
#> gene45 -0.379902 0.00245098 0.3774510
#> gene2 -0.448529 0.33088235 0.1176471
#> gene4 -0.531863 0.57107843 -0.0392157
#>
#> $pvalues
#> NULL
#>
#> attr(,"class")
#> [1] "Cepo" "list"
topGenes(cepo_output, n = 2)
#> $a
#> [1] "gene38" "gene41"
#>
#> $b
#> [1] "gene4" "gene34"
#>
#> $c
#> [1] "gene8" "gene45"
#>
topGenes(cepo_output, n = 2, returnValues = TRUE)
#> $a
#> gene38 gene41
#> 0.5514706 0.4044118
#>
#> $b
#> gene4 gene34
#> 0.5710784 0.5269608
#>
#> $c
#> gene8 gene45
#> 0.3897059 0.3774510
#>